Exercice 1 (4.1.3)

Quels sont les éléments dont les ions chargés 3+ présentent les configurations électroniques suivantes :

- a) $[Ar]3d^{3}$
- b) [Xe] $4f^{14}5d^6$
- c) [Ne]
- d) [Kr]

Exercice 2 (4.2.1, modifié)

En considérant l'état fondamental, indiquer le nombre d'électrons célibataires des ions suivants :

 Mn^{2+} , S^{2-} , V^{4+} , Pb^{2+}

Exercice 3

Trouver un cation de charge 2+ dont la configuration électronique est la suivante :

Exercice 4 (4.2.12)

Identifier, en considérant leur position dans le tableau périodique, les espèces réagissant comme des réducteurs, des oxydants et celles qui ne sont inertes chimiquement: Na, O, Ca, Ne, F, Ar, Cs

Exercice 5 (4.2.14)

Pourquoi K⁺ et Cl⁻, qui présentent la même configuration électronique, n'ont-ils pas le même rayon ionique ?

Exercice 6 (5.1.6)

Utiliser le tableau périodique pour arranger les éléments suivants par ordre décroissant de conductivité électrique : Ge, Ca, S et Si.

Donnée : la conductivité électrique est d'autant plus grande que le caractère métallique est grand.

Exercice 7 (6.1.1)

Qualifier la nature des liaisons chimiques (ionique, covalente non polaire, covalente polaire) dans les corps suivants :

$$HCl$$
, NaF , $C-C$ dans H_3C-CH_3 , $CsCl$, C -O dans CO_2 et N_2

Exercice 8 (6.2.2)

Indiquer la polarité de chaque liaison suivante à l'aide d'une flèche (→ ▶)

$$O-H,C-O,C-N,C-Cl,N-H,F-Cl\\$$

QCM:

1) En considérant l'état fondamental, indiquer le ou les nombre(s) quantique(s) dont la valeur est la même pour tous les électrons célibataires de Fe³+:	
a) le nombre quantique principal n b) le nombre quantique secondaire l c) le nombre quantique magnétique m_1 d) le spin m_s	
2) Indiquer, dans la liste suivante, le (les) groupe(s) où les deux espèces chimiques ont le même nombre d'électrons célibataires, à l'état fondamental:	
a) Ti et Ti ²⁺ b) Ti et Ti ⁴⁺ c) Zn ²⁺ et Ni d) Mn ²⁺ et Fe ³⁺	
3) En considérant l'état fondamental des atomes mentionnés, indiquer la (les) proposition(s) exacte(s) dans la liste suivante	
a) dans l'atome d'azote N, trois électrons définis par $n=2$, $l=1$ ont nécessairement la rvaleur de m_s b) les électrons célibataires d'un atome ont nécessairement les mêmes valeurs de n et de l c) dans l'atome d'arsenic As, il y a 8 électrons avec $m_l=0$ d) dans l'atome de mercure Hg, il y a 8 électrons avec $m_l=-2$	même
4. Indiquer quelle(s) est (sont) l'(les) affirmation(s) correcte(s)	
a) Il faut plus d'énergie pour arracher un électron de l'ion Na ⁺ que de l'atome Ne b) le rayon atomique du sodium Na est plus grand que celui du chlore Cl c) la 1ère énergie d'ionisation du potassium K est plus grande celle du brome Br d) l'électronégativité du césium Cs est plus élevée que celle du sodium Na	